济南求知教育官方网站

2020年成人高考高起专数学考试摸拟(复习)试题及解答

发表时间:2020-03-03 09:39

本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。

第Ⅰ卷(选择题75分)

注意事项:(略)

一、选择题:本大题共15分,每小题5分,共75分。在每小题列出的四个选取项中,只有一项是符合题目要求的。

  (1)设M={x2,xR},P={x|-x-2=0,xR}.MP

(A)Φ (B)M (C)M{-1} (D)P

(2)下列函数中,为偶函数且在(0+∞)内单调减函数的是

(A)y=cosx (B)y=+1 (C)y=1- (D) y=+

(3)函数f(x)=的定义域是

A)- ,0 (B)(-,0] C)(0,+∞) (D)[0, +∞)

(4)不等式组{ < 的解集是<

  (Ax>-7 (B)x< (C)-7< (D)Φ

(5)已知a>b,则下列等式中恒成立的是

(A)loga>logb (B)>b (C)<( (D)>

(6)已知等差数列{a}a=2a-3n+1,则第5a等于

  (A23 B20 C17 D14

  (7)函数y=y=的图像关于

  (A)坐标原点对称Bx轴对称Cy轴对称D)直线y=x对称

  (8)如果0<1,那么a的取值范围是

  (A0< (B)a<1 (C)1<3 (D)a>3

(9)已知椭圆上一点到两焦点(-20),(20)的距离之和等于6,则椭圆的短轴长为

  (A5 B10 CD2

  (10)甲乙两人各进行一次射击,甲击中目标的概率是0.3,乙击中目标的概率是0.6,那么两人都击中目标的概率是

  (A0.18 (B)0.6 (C)0.9 (D)1

(11)函数y=sin2x+cos2x

(A)偶函数B)奇函数

(C)非奇非偶函数D)既是奇函数又是偶函数

(12)关于x的方程的两根之和为8,两根之积为-4,则

(A)a=-2,b=-2 (B)a=-2,b=2 (C)a=2,b=-2 (D)a=2,b=2

(13)0,1,2,3这四个数字组成个位数不是1的没有重复数字的四位数共有

(A)16 (B)14 (C)12 (D)10

(14)已知点P(4,9)P(6,3),O是以线段PP为直径的圆,则圆的方程为

(A)(x-5)+(y-6)=10 (B)(x-5)+(y-6)=40

(C)(x+1)+(y-3)=10 (D)(x+1)+(y-3)=40

(15)如果k是非零的实常数,则下列命题中正确的是

(A)y=是增函数 (B)y=增函数

(C)y=(k-k+1) (D)y=log是增函数

  第Ⅱ卷(非选择题75分)

  二填空题:本大题共4个小题,每小题5分,共20分,把答案填在横线上。

(16)一个向量a把点(-1-1)平移到(-1,0),则点(-1,0)平移到

(17)已知sina+cosa=,则tana+cosa=

(18)过点(2-3)且与直线2x+y-3=0垂直的直线方程是

(19)随机掷一骰子,则所有骰子的点子数ξ的期望是

  三、解答题:本大题共5小题,共55分,解答应写出推理、演算步骤。

  (20)(本小题满分10分)设函数y=ax+bx+c的最大值是8,并且其图像通过A-2,0)和β(16)两点,试写出此函数解析式。

  (21)(本小题满分10分)设α,β是方程(lgx-lgx-2=0的两个根,求logβ+logα的值。

(22)(本小题满分11分)数列{a}的通项公式为a=2n-11,问项数n为多少时,使数列前n项之和S的值最小,并求S的最小值。

(23)(本小题满分12分)在△ABC中,已知BC=1,∠B=π/3,△ABC的面积为,求tanC的值。

(24)(本小题满分12分)已知椭圆的中心在坐标原点,焦点在坐标轴上,直线y=x+1与该椭圆相交于PQ两点,且OPOQ,∣PQ=,求椭圆方程。